Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 6 | |
Section | Biomedical and Healthcare Applications | |
DOI | https://doi.org/10.1051/matecconf/202032105006 | |
Published online | 12 October 2020 |
Second-generation Titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A Comparison of the Mechanical Properties for Implant Applications
Technische Universität Braunschweig, Institut für Werkstoffe, Langer Kamp 8, 38106 Braunschweig, Germany
* c.siemers@tu-braunschweig.de
Due to their outstanding mechanical properties, excellent corrosion resistance and biocompatibility titanium and titanium alloys are the first choice for medical engineering products. Alloys currently used for implant applications are Ti-6Al-4V (ELI) and Ti-6Al-7Nb. Both alloys belong to the class of (α+β)-alloys and contain aluminium as an alloying element. Aluminium is cytotoxic and can cause breast cancer. In addition, the stiffness of (α+β)-alloys is relatively high which can lead to stress shielding, bone degradation and implant loss. For this reason, second-generation titanium alloys like Ti-15Mo (solute-lean metastable β-alloy) and Ti-13Nb-13Zr (β-rich (α+β)-alloy) have been developed. However, their application in medical implants is limited due to a relatively low strength.
Therefore, in the present study, the mechanical properties of Ti-15Mo and Ti-13Nb-13Zr have been optimised by thermomechanical treatments to achieve high strengths combined with low stiffnesses. Different phase compositions have been used, namely, α-, β- and ω-phase in Ti-15Mo and α-, β- and αʺ-phase in Ti-13Nb-13Zr. For Ti-15Mo, the required mechanical properties’ combination could not be achieved whereas Ti-13Nb-13Zr showed high strength and a low Young’s modulus after a dedicated thermo-mechanical treatment. This makes the latter alloy a good option for replacing the (α+β)-alloys in implant applications in the future.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.