Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 10 | |
Section | Aerospace Applications | |
DOI | https://doi.org/10.1051/matecconf/202032104011 | |
Published online | 12 October 2020 |
High temperature oxidation and mechanical behavior of β21s and Ti6242S Ti-based alloys
1 CIRIMAT, Université de Toulouse, CNRS, INP- ENSIACET 4 allée Emile Monso BP44362, 31030 Toulouse cedex 4 France
2 Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse, France
* aurelie.vandeput@ensiacet.fr
Aircraft industry always looks for higher in-service temperatures and lighter structures. With a high specific strength, Ti-based alloys are good candidates for such applications. However, when exposed to oxidizing environments at high temperatures, they undergo large oxygen dissolution while forming an oxide scale, which can greatly affect their mechanical properties. Then, evaluating the oxidation resistance and mechanical behavior of such alloys is essential. In this aim, long term oxidation tests were performed under laboratory air between 500 °C and 625 °C on two Ti-based alloys: β21s, exhibiting a fully β microstructure supposed to dissolve lower amount of oxygen and nitrogen, and Ti6242S, with an α/β microstructure. The oxidized samples were characterized using XRD, Raman spectroscopy, SEM-EDS and micro-durometer. As for the mechanical behavior, tensile tests were performed at room temperature on not aged and on oxidized samples. While larger mass variations were obtained at 500 and 560 °C and up to 997 h at 625 °C for β21s, its mass variations became lower than those of Ti6242S for longer durations at 625 °C. Nevertheless, β21s exhibited thicker micro-hardness affected depths and underwent larger mechanical property modifications compared to Ti6242S.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.