Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 9 | |
Section | Aerospace Applications | |
DOI | https://doi.org/10.1051/matecconf/202032104009 | |
Published online | 12 October 2020 |
Effect of oxygen contents on strain rate sensitivity of commercially pure titanium
1 Dept of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea
2 Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
* Corresponding author: t.jun@inu.ac.kr
In this study, we have investigated the effect of oxygen contents on strain rate senstivitiy (SRS) within Gr. 1 and 4 commercially pure titanium (CP-Ti). The SRS was evaluated in multi-scales using macro-scopic tensile test with constant strain rate (CSR) method and strain rate jump (SRJ) method, and nanoindentation test with SRJ method. Electron backscatter diffraction (EBSD) has been used to characterise crystallographic texture and individual grain orientation of samples. Slip and twin activities of each CP-Ti were compared by EBSD measurements and the associated Schmid factor (SF) analysis. The active slip system is anticipated to be different in each relation between loading directions and textures, but twin activity is much similar. The texture dependent global SRS is thus thought to be resulted from the different slip activity. Local SRS was dependent not only on the grain orientation but also on the oxygen contents, leading to the fact that the impact of oxygen contents is closely correlated in macro- and micro-scopic level.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.