Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 12 | |
Section | Additive and Near Net Shape Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032103032 | |
Published online | 12 October 2020 |
From the fatigue properties of Ti6Al4V produced by ALM selective laser melting process to the mechanical design of an aeronautical part
1 IRT Jules Verne, Bouguenais
2 LAMPA, Arts et métiers ParisTech, Angers
3 DAHER, Tarbes,
Selective laser melting SLM is investigated through a study of redesign and characterization of an aeronautic part made of titanium Ti6Al4V. The part must ensure an excellent static and fatigue behaviour. The methodology developed hereby follows 3 main steps: First, the influence of laser power, laser speed and hatch distance on the amount/rate of porosity is performed to define optimized process parameters. Then, the influence of building process strategy, i.e. building direction or as-built surface roughness on the static and fatigue behaviour are studied and understood by following a vast experimental campaign. Obtained properties are finally used in a topology optimization study to find the best compromise between part weight and fatigue behavior . 3 prototypes of simulated part are produced and then characterized. Fatigue tests are conducted on the component and confirm the fatigue design proposed. Obtained results are encouraging and illustrate the fatigue design optimization of a complex Additive Manufacturing component.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.