Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 03023 | |
Number of page(s) | 6 | |
Section | Additive and Near Net Shape Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032103023 | |
Published online | 12 October 2020 |
Microstructural Stability of Ti based Composites Fabricated by Spark Plasma Sintering
Nagoya Institute of Technology, Japan
In our previous study, the effects of TiC heterogeneous nucleation site particles on formability and microstructure of additive manufactured (AMed) Ti-6Al-4V products were studied. It was found that the addition of TiC particles decreased the grain size of primary β phase in AMed Ti-6Al-4V samples, since TiC particles act as heterogeneous nucleation sites. It is also found that the density of AMed Ti-6Al-4V samples could be increased by addition of TiC particles. It is expected that solid-state β-grain growth by the high temperature thermal cycles associated with layer-by-layer manufacturing can be suppressed by the pinning effect of TiC heterogeneous nucleation site particles. In this study, the pinning effect of heterogeneous nucleation site particles on microstructure of Ti at elevated temperatures is studied. For this purpose, Ti-0.3vol%TiC samples fabricated by spark plasma sintering (SPS) are used as the model materials, and microstructure and hardness of the samples heat treated at elevated temperatures are studied.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.