Issue |
MATEC Web Conf.
Volume 318, 2020
7th International Conference of Materials and Manufacturing Engineering (ICMMEN 2020)
|
|
---|---|---|
Article Number | 01050 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/202031801050 | |
Published online | 14 August 2020 |
Vibration isolation performance of an elevator motor using Nitrile-Butadiene Rubber /Multi-Walled Carbon Nanotube composite machine mounts
Laboratory for Machine Tools and Manufacturing Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
* Corresponding author: ktsongas@auth.gr
The objective of this paper is to evaluate the vibration isolation performance of an elevator motor mounted on elastomeric nanocomposite mounts. A series of conventional acrylonitrile-butadiene rubber (NBR) mounts have been reinforced with 20wt% concentration of multi-walled carbon nanotubes (MWCNTs). The vibration isolation capacity of the machine mounts was calculated through the transmissibility of an elevator motor test system. A Finite Element Model (FEM) was introduced and a harmonic analysis based on the ANSYS code has been utilized to investigate the modal behavior of the nanocomposite machine mount/elevator motor system and extract a representative model of the vibrational behavior. The cyclic compression results have revealed that the stiffness and damping capacity of the conventional elastomers can be modified by adjusting the proportion of MWCNTs. Elastomers’ vibration isolation performance of the motor was ameliorated with the inclusion of MWCNTs, signifying that the enhancement of the elastomers with MWCNTs was rather effective. The vibration level of the elevator motor was decreased to 90% by incorporating the optimal concentration of MWCNTs in NBR mounts.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.