Issue |
MATEC Web Conf.
Volume 318, 2020
7th International Conference of Materials and Manufacturing Engineering (ICMMEN 2020)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/202031801038 | |
Published online | 14 August 2020 |
3D finite element analysis of Al7075-T6 drilling with coated solid tooling
1
University of Zaragoza, Department of Design and Manufacturing, C/Maria de Luna 3, 50018 Zaragoza, Spain
2
National Technical University of Athens, School of Mechanical Engineering, Heroon Polytechniou 9, 15780 Zografou, Athens, Greece
3
University of Western Macedonia, Dept. of Product and Systems Design Engineering, Kila Kozani, GR50100, Greece
* Corresponding author: pkyratsis@uowm.gr
Due to the fact that simulation of drilling was added in commercial finite element analysis (FEA) software only recently, 3D finite element modelling is an invaluable asset during related researches. The present study employs 3D FEA to model the drilling process of Al7075-T6 alloy with solid carbide tooling, investigates important phenomena that occur during drilling and finally compares the simulated results with experimental data. A number of simulations were performed with DEFORM3D™ software at different cutting conditions; cutting speed of 50m/min, 100m/min, 150m/min and feed of 0.15mm/rev, 0.20mm/rev, 0.25mm/rev. The proposed model takes into consideration certain aspects like damage initiation and evolution of the material, contact interface between the drill bit and the workpiece and standard boundary conditions. Eventually, the acquired numerical data for thrust force were compared to the experimental results for the same cutting conditions and parameters. To obtain the experimental data, a series of nine drilling tests were performed. Upon validation of the numerical data, the temperature distribution on the tool tip – workpiece interface, as well as the chip morphology (shape and curling radius) were determined. Results showed a good agreement between the numerical and the experimental data. Specifically, thrust force and chip morphology exhibited an agreement of about 95% and 90% respectively, which confirms the potential of 3D FEA implementation on machining investigations.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.