Issue |
MATEC Web Conf.
Volume 318, 2020
7th International Conference of Materials and Manufacturing Engineering (ICMMEN 2020)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/202031801025 | |
Published online | 14 August 2020 |
Optimization of a novel external fixator for orthopaedic applications
1
Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
2
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK
* Corresponding author: Mohammed.alqahtani@manchester.ac.uk
The use of external fixation devices is a very common method for the treatment of bone fractures. However, these fixators present some limitations in terms of mobility, significant risk of infection, and induce pain and discomfort. Moreover, they are also not fully customized to suit individual patients. To avoid these limitations, this paper presents a novel patient-specific external fixator developed using reverse engineering, finite element analysis and additive manufacturing. The fixator was designed based on a set of computer tomography (CT) scan images of a patient and optimized considering different thickness values and materials. New lightweight designs were produced through a manual process (regular distribution of circular and hexagonal voids) and topology optimization. Different polymeric materials (Polylactic acid (PLA); Acrylonitrile butadiene styrene (ABS) and Polyamide (PA)) were also considered for the fabrication of these designs. It was found that although both PLA and ABS allow to meet the design requirements, and that the best mechanical properties were obtained with fixators made of PLA. Results also showed that the best results in terms of mechanical performance and weight reduction was obtained with topology optimization.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.