Issue |
MATEC Web Conf.
Volume 307, 2020
International Conference on Materials & Energy (ICOME’17 and ICOME’18)
|
|
---|---|---|
Article Number | 01055 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202030701055 | |
Published online | 10 February 2020 |
Experimental analysis of a Vapour-Liquid Separated Flat Loop Heat Pipe Evaporator System
1 Tianjin University, School of Architecture, 300072 Tianjin, China
2 Tianjin University of Commerce, Key Laboratory of Refrigeration Technology of Tianjin, 300134 Tianjin, China
3 Fujitsu LTD, 2118588 Tokyo, Japan
* Corresponding author: sarul@tju.edu.cn
In this paper, a unique operation mechanism of loop heat pipe (LHP) was proposed. To test the performance of LHP under this new mechanism, a visual flat LHP evaporator prototype and an open experimental system were designed and assembled, and start-up experiment and variable heat load experiment were done respectively to obtain the actual operation characteristics, such as the evaporator thermal resistance (Re), total thermal resistance (Rt), start-up time and temperature of base plate. The proposed LHP had better overall performance during the start-up tests when He value of EC was set to 0.5mm, and its corresponding Re and Rt value were 0.035 K/W and 0.451 K/W when the heating power was 208w. Meanwhile, as per the heat load applied to the base plate, the whole variable heat load experiment could be divided into three distinct stages: low heat load stage, efficiency operation stage and dry-out stage. Moreover, the results also showed that the circulation driven head formed inside of the EC played an important role in promoting the operation performance, especially when the wick, the vapour-liquid interface and the bottom of the evaporator arrived at a reasonable situation.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.