Issue |
MATEC Web Conf.
Volume 306, 2020
The 6th International Conference on Mechatronics and Mechanical Engineering (ICMME 2019)
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 5 | |
Section | Aerospace Engineering | |
DOI | https://doi.org/10.1051/matecconf/202030605002 | |
Published online | 14 January 2020 |
Real-time estimation method of roll angle based on least squares recursion
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
* Corresponding author: 1454341945@qq.com
The rotary missile stands a high overload during the launch and has to be powered up after launch, so it is necessary to achieve inflight alignment under high dynamic conditions. As a key technology of inflight alignment, the measurement method of roll angle has attracted more and more attention from researchers. The rotational speed of the rotary missile is very high, and most MIMUs cannot directly measure the roll angle. To solve this problem, this paper proposes a roll angle estimation method based on least squares method, analyzes its principle and derives the calculation procedure. Then on this basis, the roll angle estimation method based on least squares recursion is studied. The principle and calculation procedure of this method are deduced in detail. At last, the simulation experiment on MATLAB is carried out. The results show that this method is simple in calculation, high in accuracy and good in real-time performance, and has great application value.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.