Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 8 | |
Section | Flight Physics: Noise & Aerodynamics | |
DOI | https://doi.org/10.1051/matecconf/201930402019 | |
Published online | 17 December 2019 |
Wing-Propeller Interaction
Department of Aerospace Engineering, Czech Technical University in Prague,
121 35
Praha 2,
Czech Republic
* Corresponding author: nikola.zizkovsky@fs.cvut.cz
Paper describes the effect of the distributed electric propulsion system (DEP) on the aerodynamic characteristics of the airplane wing. Using CFD simulation is described the influence of the wake of the propeller on the wing for various ratios of the propeller diameter to the wing chord. Unlike the normal case of wing-propeller interaction, periodic boundary conditions are used, i.e. a rectangular wing with infinite span with propellers installed periodically its span is considered. A wind tunnel experiment will be used to verify the calculations. Propeller thrust is set to compensate for airplane drag in horizontal flight, i.e. equal to the wing segment drag, which is increased by the corresponding part of the expected drag of other parts of the airplane. The increase of the drag was determined by the aerodynamic design of a generic airplane with DEP. The benefit of the work are the input data usable for the conceptual design of the airplane wing with DEP.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.