Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 8 | |
Section | Aerostructures & Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201930401007 | |
Published online | 17 December 2019 |
Challenges and opportunities on nano-enabled multifunctional composites for aerostructures
1
Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Materials and Composite Structures unit,
Porto,
Portugal
2
Institute of Chemical Engineering Sciences, Foundation of Research and Technology Hellas (FORTH/ICE-HT),
Patras,
Greece
3
Associated Laboratory of Energy, Transports and Aeronautics (LAETA), Faculty of Engineering, Porto University,
Porto,
Portugal
* Corresponding author: rmsantos@inegi.up.pt
The incorporation of carbon-based nanomaterials in the polymeric matrix of carbon fibre reinforced polymer composites has recently received worldwide attention, aiming to enhance their performance and multifunctionality. In this work, different loadings of nanoparticles from the graphene family, including reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), were produced from graphite exfoliation. The mixing conditions for the production of epoxy-based suspensions were optimized using a three-roll mill, by changing the residence time and hydrodynamic shear stresses. The rheological behaviour, electrical conductivity and optical assessment were performed to study the influence of these nanoreinforcements on the resin properties. Afterwards, pristine and modified suspensions containing 0.089 wt. % of rGO or 2.14 wt. % of GNPs were used for manufacturing pre-impregnated materials with carbon fibre volume fractions of approximately 59 %. The nano-enabled CFRPs presented improved transverse electrical conductivity between 48 and 64 % when compared to the reference material. Significant enhancement of interlaminar fracture toughness (98.4 %) was found with GNPs.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.