Issue |
MATEC Web Conf.
Volume 303, 2019
2019 3rd International Conference on Building Materials and Materials Engineering (ICBMM 2019)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 6 | |
Section | Decoration Materials | |
DOI | https://doi.org/10.1051/matecconf/201930303002 | |
Published online | 12 December 2019 |
Mechanical Characterization of Angustifolia Kunth and Rayada Amarilla Guadua Bamboo
1 Institución Universitaria Colegio Mayor de Antioquia, Medellí 050034, Colombia
2 Universidad Federal do Rio de Janeiro, Rio de Janeiro, 68501, Brazil.
a Corresponding author: blgarcia@est.colmayor.edu.co
Guadua is a Colombian endemic type of grass belonging to the bamboo family. It can be considered an alternative construction material due to its physical and mechanical properties, as well as a sustainable source of timber due to its fast growing process and high availability in tropical countries. The Guadua is composed by the stem petiole or lower part, the stem base, and the stem. In turn, the stem is divided into sections separated by diaphragms that form knots, called culms. The distance between knots and the structure of the longitudinal fibers in the culms depend on the age of the plant. This implies a difficulty when determining the mechanical properties of the stem, since there are not specific standards for this purpose. In this work the mechanical properties of young samples of Angustifolia Kunt and Rayada Amarilla Guadua, of around 6 years of growth, were characterized. To account for the natural variability introduced by the presence of diaphragms, cylindrical and prismatic samples were extracted without knot, with one knot in the middle, and with one knot at each end. Cylindrical samples were used to measure compressive strength parallel to the fiber direction, while prismatic samples were used to measure tensile strength also parallel to the fiber direction and flexural strength by three point bending. Methodologies from conventional construction materials were adapted for this purpose. The obtained results allowed concluding that the Guadua samples present different mechanical properties depending on the position of the knots. Samples with a knot in the middle are more resistant to compressive stresses, while the samples without knot are more resistant to flexural and traction stresses. The samples with one knot at each end presented a more balanced behavior, being efficient when exposed to compression, traction and flexural stresses.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.