Issue |
MATEC Web Conf.
Volume 303, 2019
2019 3rd International Conference on Building Materials and Materials Engineering (ICBMM 2019)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 5 | |
Section | Building Energy Saving | |
DOI | https://doi.org/10.1051/matecconf/201930302001 | |
Published online | 12 December 2019 |
Mortars Containing Sustainable PCM’s for the Energy Efficiency of Buildings
1 Innovation Engineering Department University of Salento, Italy
2 Institute of Archaeological Heritage Monuments and Sites, CNR-IBAM, Italy
3 Civil Engineering Department University of Minho, Portugal
a Corresponding author: mariaenrica.frigione@unisalento.it
Energy use in buildings represents more than one-third of global energy consumption and contributes to nearly one-quarter of greenhouse gases emission worldwide. The thermal comfort demand represents one of the main cause of the increased energy consumption. To guarantee a thermal indoor comfort, contributing at the same time to the energy saving, the Thermal Energy Storage (TES) methodologies have recently gained interest. These technologies involve the use of a smart material, i.e. a Phase Change Material (PCM), with the capability to absorb/release energy from/in the environment; it can be easily integrated into a building material, such as a mortar. In this work, aerial lime-based mortar with the incorporation of an eco-sustainable PCM have been analyzed with the purpose to improve the energy efficiency of buildings. For its non-toxic nature, a thermoplastic polymer has been selected as PCM, i.e. Poly-Ethylene Glycol (PEG 1000). This material was included in an inert support obtained as byproduct of stone extraction from quarry. The final product, i.e. PEG/stone, can be regarded as a composite to be used as mortar aggregate. A preliminary (chemical and physical) characterization of this compound shown that the sustainable aggregates PEG/stone have an appropriate Latent Heat Thermal Energy Storage (LHTES). The addition of these aggregates into a mortar compositions lead to an unsuitable reduction of mechanical properties.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.