Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 8 | |
Section | LCF or Cyclic Behaviour | |
DOI | https://doi.org/10.1051/matecconf/201930008002 | |
Published online | 02 December 2019 |
Cyclic Deformation and Low-Cycle Fatigue for 316LN Stainless Steel under Non-proportional Loading
School of Chemical Engineering and Technology, Tianjin University, P. R. China
* Corresponding author: xchen@tju.edu.cn
The effects of loading path and strain amplitude ratio on the cyclic behavior and fatigue life were investigated on a 316LN nuclear grade stainless steel employing a series of symmetrically strain-controlled fatigue tests at room temperature. The loading paths of Uniaxial, Torsional, Proportional, Rhombic, Rectangular, and Circular were employed with the constant equivalent strain amplitude of 0.5%. The strain amplitude ratio of 2.35, 1.73 and 1.27, defined by the ratio of shear strain amplitude to the axial strain amplitude, was realized by changing the shear strain amplitude under Proportional, Rhombic, Rectangular and Elliptical loading paths. As expected, the significant non-proportional additional hardening was observed. It’s interesting to note that the axial cyclic stress response varied with the strain amplitude ratio, and the law was different under different loading paths. The fatigue life of all the tests were evaluated by three critical plane criteria proposed by Smith-Watson-Topper (SWT), Fatemi-Socie (FS) and Chen-Xu-Huang (CXH). Results show that the SWT criterion significantly overestimated the fatigue life of non-proportional loading because the effect of shear damage was not considered. The CXH criterion for tensile-type failure yielded good prediction results except for two torsional data points. The FS criterion provided better predictions than other models.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.