Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 9 | |
Section | Contact and Fretting Fatigue | |
DOI | https://doi.org/10.1051/matecconf/201930006001 | |
Published online | 02 December 2019 |
Investigation of the asperity point load mechanism for thermal elastohydrodynamic conditions
Department of Solid Mechanics, KTH – Royal Institute of Technology
* Corresponding author: cmev@kth.se
The rolling contact fatigue damage called pitting or spalling develops more frequently in surfaces with negative than positive slip. Since normal line loads do not cause any tensile surface stresses this investigation considers the effects of small point shaped asperities. Shear traction causes tensile stresses at the trailing edge of asperities entering the contact at negative slip. At positive slip the tensile stresses appear at the leading edge when the asperities exit the contact. It was found that the trailing edge of the asperity breaks through the lubrication film at contact entry. This causes negative slip to be more detrimental than positive slip. At negative slip the location of large frictional shear stresses and tension stresses from normal asperity contact coincide.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.