Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 9 | |
Section | Application | |
DOI | https://doi.org/10.1051/matecconf/201930004002 | |
Published online | 02 December 2019 |
Bolt fatigue parametric study of a bolted assembly
Université Clermont Auvergne, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
* Corresponding author: aliou_badara.camara@uca.fr
Structural integrity of aircraft, nuclear power plants, space rockets, ships, automotive structures, biomedical devices, and many other applications, is a major design purpose and concerns various components subjected to cyclic loads for which fatigue is generally the dominant factor leading to its failure. The fatigue damage cumulation phenomenon is a process which may lead to cracks initiation and possibly to the structure failure under the action of variables stresses cycles. The mechanical components are generally subjected to multiaxial stress states. Taking into account this stress states triaxiality generally deals with multiaxial fatigue criteria. They are suitable tools for assessing the material fatigue resistance against periodical stress states, especially when they are multiaxial. The study carried out in this paper aims to analyze the fatigue behaviour of pre-stressed bolts involved in a so-called tee-stub bolted assembly that is subjected to variable loads. A multiaxial fatigue post-processing tool using two multiaxial fatigue approaches (integral approach and critical plan approach) is developed and implemented on Matlab software in order to assess the bolt fatigue damage and then its fatigue life through an iterative process. The tool is validated by fatigue test results on bolted assemblies found in the literature, which are additionally compared with those obtained by standards (Eurocode, VDI). A parametric study on the tee-stub is then performed.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.