Issue |
MATEC Web Conf.
Volume 294, 2019
2nd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2019)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 6 | |
Section | Interoperability, Safety and Certification on Transport | |
DOI | https://doi.org/10.1051/matecconf/201929403008 | |
Published online | 16 October 2019 |
Justification of parameters of wheelset axle fatigue strength test-bench for railway rolling stock
Dnipro National University of Railway Transport named after Academician V. Lazaryan, Department of Applied Mechanic and Material Sciences, 2 Lazaryana St., 49010 Dnipro, Ukraine
* Corresponding author: kuropyatnick@gmail.com
The operation safety of the railway rolling stock depends directly on the strength of the base part of the wheelset – its axle. Therefore, in recent years numerous studies of theoretical and experimental nature, both for means of rail transport, and for machines containing rail track equipment are carried out. This paper substantiates the main parameters of the fatigue test bench for axles for wheelsets of railway rolling stock. We performed an analysis of the load schema for bench tests, determined the dependence of the bench work force on the parameters of the wheelset axle. In addition, we substantiated the design and parameters of vibrator. For the research, we adopted the following criteria of rationality: work force, energy consumption and longitudinal dimension of the test bench. The design is considered the best, if these criteria acquire the smallest values. The results of the research indicate that the load scheme “cantilever beam” is rational for the fatigue bench tests of the axles for wheelsets of railway rolling stock. The best design of the vibrator have to provide the test bench work force by rotating the unbalanced mass around the stationary wheelset axle. The rational vibrator contains a sectoral eccentric mass rotating at an angular velocity of about 150 s-1. In this case, the eccentric mass value is about 80 kg, and its eccentricity is 135 mm.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.