Issue |
MATEC Web Conf.
Volume 289, 2019
Concrete Solutions 2019 – 7th International Conference on Concrete Repair
|
|
---|---|---|
Article Number | 08004 | |
Number of page(s) | 9 | |
Section | Service Life Modelling | |
DOI | https://doi.org/10.1051/matecconf/201928908004 | |
Published online | 28 August 2019 |
ASR: Practical investigative techniques and field monitoring systems used to assess ASR for service life modeling.
1
Echem Consultants, Technical Operation Manager, New York, USA
2
Echem Consultants, Technical Director, New York, USA
3
Echem Consultants, Principal, New York, USA
* Corresponding author: imatteini@e2chem.com
Alkali Silica Reaction (ASR) is a common deterioration mechanism affecting many concrete structures of any type and age. Initially identified more than 60 years ago (Stanton, 1930), this mechanism is based on the chemical reactions between certain siliceous minerals present in the aggregate and the alkalinity of the concrete in the presence of moisture (internal RH). While certain deterioration patterns are clearly associated with ASR, such as gel exudation, aggregate expansion, and characteristic cracking, the material degradation can often be misdiagnosed to the untrained eye. In addition, certain elements of a structure can be severely affected while neighboring elements of the same batch/ mix design do not bear signs of deterioration or impact. Thus far, in situ field monitoring of ASR affected structures is related to moisture measurements, electrical resistivity, expansion, service life models are based on fracture mechanics of the aggregate. The impact to the concrete is loss of integrity, decreased compressive strength, shear and tensile strength. Some observed structures have split, with such force, that the concrete structure had cracks greater than 25mm where steel retention bands have split. The authors of this paper were engaged in two instances to provide service life assessments for ‘corrosion related degradation’ on ASR affected structures. In all instances the elements which were assessed were structural, load bearing elements, which if failed could pose a significant risk to owner, user, or end recipient. The need to develop an assessment technique for monitoring and service life assessments which are practical and efficient is being developed. The paper will discuss the development of the approach, from visual indicators identifying condition hierarchies, to long term condition monitoring for various concrete parameters combined with laboratory testing (expansion and residual alkalis) and mathematical modeling. Three case studies will be presented to illustrate conditions and process.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.