Issue |
MATEC Web Conf.
Volume 289, 2019
Concrete Solutions 2019 – 7th International Conference on Concrete Repair
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 8 | |
Section | Patch Repair | |
DOI | https://doi.org/10.1051/matecconf/201928902006 | |
Published online | 28 August 2019 |
Mix-Design and Control of Exposure Class of Durable Concrete
Material Technology Unit, University of Innsbruck, Austria
Corresponding author: peter.paulini@aon.at
Durability requirements for concrete are determined by climatic, chemical and mechanical effects, depending on the climatic location and intended use of structural parts. The European standard EN 206-1 defines different types of exposure classes and specifies requirements for concrete, such as type and minimum quantity of cement, maximum w/c ratio, minimum compressive strength or minimum entrained air pore content. Additional characteristics required for a higher workability often lead to contradictory situations in practice and cannot be satisfactorily resolved by varying the mix design of the concrete. Based on a real life scenario where a C35/45 XD3 concrete had been used in the construction of a multi-storey car park, which presented serious cracking after only a short service time, this paper proposes a number of methods designed to assess the quality and durability of concrete. The proof of exposure classes at the hardened building concrete is not regulated in existing national standards. Therefore, in many court disputes it is difficult to prove the quality of the hardened concrete because of lacking regulations. However, it is possible to verify the w/c-ratio using the capillary porosity. The basic relationships between cement content, w/c-ratio and capillary porosity are derived and discussed. Higher proportions of cement, which are necessary to achieve a better workability or higher strength, result in a reduced modulus of elasticity and increased shrinkage as well as a higher risk of cracking. The associated increase of capillary pore volume and of permeability reduces the service life of concrete. The determination of performance-based concrete properties such as permeability, chloride migration or electrical conductivity further complements the assessment of concrete durability. These properties can be used for estimating the resistance of the capillary pore structure to specific damage mechanisms.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.