Issue |
MATEC Web Conf.
Volume 287, 2019
6th International BAPT Conference “Power Transmissions 2019”
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 9 | |
Section | Design, Analysis, Simulation and Optimization | |
DOI | https://doi.org/10.1051/matecconf/201928701011 | |
Published online | 14 August 2019 |
Fast tooth root load capacity optimization based on improved design of hob geometry
Ruhr Universität Bochum, Chair of Industrial and Automotive Drivetrains, 44801 Bochum, Germany
* Corresponding author: ray.uelpenich@rub.de
The competitiveness of gearboxes is significantly influenced by their performance ability. Increasing the tooth root load capacity has always been in focus of current research because in case of a failure of the gearwheel due to a tooth root fracture, the complete gearbox fails. This paper presents a new calculation method that enables the optimization of hob geometries within a few minutes so that they lead to reduced stresses in the tooth root fillet of spur gears. This results in reductions of the maximum tooth root stress of 10% and more for most gearwheels. The manufacturing costs for the optimized hob are only influenced slightly. In order to increase the computational speed compared to purely FE-based optimization methods, the present paper shows a method in which the decisive part of the optimization process is based on an analytical equation which are derived by a small number of FE-calculations.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.