Issue |
MATEC Web Conf.
Volume 286, 2019
14th Congress of Mechanics (CMM2019)
|
|
---|---|---|
Article Number | 08007 | |
Number of page(s) | 3 | |
Section | Heat Transfers, Mass Transfers, Renewable Energies and Environment | |
DOI | https://doi.org/10.1051/matecconf/201928608007 | |
Published online | 14 August 2019 |
Novel Cascade Solar Desalination Still: Mathematical, Numerical and Experimental Analysis
PCMT, Laboratoire de Mécanique Appliquée et Technologies, Centre de Recherche en Sciences et Technologies Industrielles et de la Santé, ENSET, Mohammed V University in RABAT, Avenue de l’Armée Royale, BP 6207 Rabat-Instituts, MOROCCO
Morocco is considered as a water-stressed country and is among the countries that face fresh water scarcity. However Morocco has an important solar energy and a significant amount of seawater and ocean. Therefore converting saline water to fresh water using solar energy is the perfect and the cleanest solution. Solar still is the simplest, cleanest and cheapest technology of solar desalination. In this paper a novel solar still with stepped-slope absorber plate and baffles was proposed and developed in order to enhance the thermal performance of the conventional solar stills. In order to validate the performance of the developed technology a comparative study were elaborated. A mathematical model was developed. The energy balance equations for the various elements of the solar still are formulated and numerically solved using the dynamic simulation program Matlab/SimulinkTM and the Euler explicit method programmed by C++. Also, the experimental process of the new construction was evaluated and validates the new pattern performance. The thermal performance was investigated and shows considerable improvement through the new construction.
Key words: Solar desalination / brackish water / stepped solar still / cascade solar still / heat transfer
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.