Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 08008 | |
Number of page(s) | 6 | |
Section | Underwater Noise | |
DOI | https://doi.org/10.1051/matecconf/201928308008 | |
Published online | 28 June 2019 |
The suppression of hydrodynamic noise from underwater sonar domes by flow control
1 Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin, China, 150001
2 Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information, Harbin, China, 150001
3 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China, 150001
* Corresponding author: liuyongwei3000@hrbeu.edu.cn
Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.