Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 07012 | |
Number of page(s) | 4 | |
Section | Ultrasounds, Signal Processing, and NDT/E | |
DOI | https://doi.org/10.1051/matecconf/201928307012 | |
Published online | 28 June 2019 |
Compressed sensing using a non-uniformly sampled range-azimuth dictionary
1 Northwestern Polytechnical University, School of Marine and Technology, 710072, Xi’an, China
2 University Antwerp, Department Engineering Management, 2000, Antwerp, Belgium
* Corresponding author: yangchsh_nwpu@nwpu.edu.cn
FM-bats are known to be able to sense the environment by echolocation. In this paper, assuming the objects in the environment can be characterized by a sparse representation of the echoes in range and azimuth, a compressed sensing algorithm using a range-azimuth dictionary is proposed. The monaural and binaural range-azimuth dictionaries are constructed from measurements collected with a bionic sonar system consisting of one emitter and two receivers fitted with a 3-D printed replica of a real bats external ears. To estimate the range and azimuth of a target, the L1-minimization method is used. Since the high coherence in azimuth templates could cause ambiguity in azimuth estimation, the use of a non-uniform sampled dictionary is investigated. The non-uniform sampling is derived from the coherence between different azimuth templates in the dictionary. The non-uniformly sampled monaural and binaural dictionaries are used to process the echoes collected from a real brick-wall. Results indicate that strong echoes can be correctly localized both in azimuth and range by all three dictionaries, but for weak, highly overlapping echoes, both monaural dictionaries have problems interpreting these echo signals correctly. In addition to missing many of the real brick seams they also generate many false reconstructed objects, but constructing a binaural dictionary the results can be improved significantly.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.