Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 5 | |
Section | Ultrasounds, Signal Processing, and NDT/E | |
DOI | https://doi.org/10.1051/matecconf/201928307005 | |
Published online | 28 June 2019 |
Horizontal spatial correlation of reverberation for rough sea-bottom interface
1 Ocean Acoustic Technology Center, Institute of Acoustics, CAS, 100190, Beijing, China
2 University of Chinese Academy of Sciences, 100049, Beijing, China
3 Beijing Engineering Technology Research Center of Ocean Acoustic Equipment, 100190, Beijing, China
* Corresponding author: wangch@mail.ioa.ac.cn
Correlation sonar, which estimates the velocity of vessel utilizing the principle of waveform invariance, can achieve the sampling of the horizontal spatial correlation of sea-bottom reverberation. The horizontal spatial correlation can be expressed as a correlation function and is affected by sea-bottom characteristics. The expression of the correlation function of the sea-bottom reverberation is derived, which is written as the convolution of the autocorrelation function of transmitted signal, the cross-correlation function of the backscattered impulse response from a plane interface, and the autocorrelation function of the probability density function of the sea-bottom roughness. The isotropic interface roughness of the sea-bottom leads to a circular planform of the correlation function whose width varies with roughness. The anisotropic interface roughness of the sea-bottom leads to an elliptical planform of the correlation function whose major axis is in the direction of weaker roughness. Simulation of submarine reverberation and correlation function verifies this conclusion. The model for the spatially covariant field is used to estimate the backscattering cross section which varies with azimuth angle under the condition of anisotropic seafloor roughness. It should be noted that the horizontal spatial correlation of reverberation is also related to sonar parameters and other sea-bottom characteristics.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.