Issue |
MATEC Web Conf.
Volume 278, 2019
2018 2nd International Conference on Building Materials and Materials Engineering (ICBMM 2018)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 6 | |
Section | Architectural Design and Management | |
DOI | https://doi.org/10.1051/matecconf/201927804001 | |
Published online | 08 April 2019 |
Computational BIM for Building Envelope Sustainability Optimization
1
Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor, Malaysia
2
Centre for the Study of Built Environment in the Malay World, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor, Malaysia
3
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
Building envelope plays an important role to protect a building from external climatic factors while providing a comfortable indoor environment. However, the choices of construction materials, opening sizes, and glazing types for optimized sustainability performance require discrete analyses and decision-making processes. Thereby this study explores the use of computational building information modelling (BIM) to automate the process of design decision-making for building envelope sustainability optimization. A BIM tool (Revit), a visual programming tool (Dynamo) and multi objective optimization algorithm were integrated to create a computational BIM-based optimization model for building envelope overall thermal transfer value (OTTV) and construction cost. The proposed model was validated through a test case; the results showed that the optimized design achieved 44.78% reduction in OTTV but 19.64% increment in construction cost compared to the original design. The newly developed computational BIM optimization model can improve the level of automation in design process for sustainability.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.