Issue |
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
|
|
---|---|---|
Article Number | 02018 | |
Number of page(s) | 8 | |
Section | Data and Signal Processing | |
DOI | https://doi.org/10.1051/matecconf/201927702018 | |
Published online | 02 April 2019 |
Numerical limit analysis of the ultimate load bearing capacity of a pier foundation under complex load
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
* Corresponding author: timwang517@tsinghua.edu.cn
A pier foundation has plenty of advantages as the foundation form for large onshore wind turbines in the terrain of the Gobi desert and collapsible loess areas. The ultimate load bearing capacity design, as an important part in the design phase of this foundation form, is not sufficiently in terms of design theory and the checking method, especially for application in collapsible loess areas. In this paper, numerical limit analysis has been employed to analyze the load bearing capacity for the scheme of selection of a pier foundation of a 100 MW wind farm in certain collapsible loess geology in Ningxia. The results were then compared with the empirical formulas, the limit equilibrium solutions and the finite element solutions to verify the accuracy of the results. It has been demonstrated that under the ultimate engineering load, the pier foundation can meet the stability requirement. In the ultimate state, whether the surrounding soil of the foundation falls in plasticity is associated with the ratio of the depth to the diameter of the foundation. The numerical limit analysis method can automatically determine the failure surface.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.