Issue |
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
Section | Metallurgy & Control and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201927701003 | |
Published online | 02 April 2019 |
Online semi-supervised multi-person tracking with gaussian process regression
Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
* Corresponding author: Baobing.Zhang@brunel.ac.uk
Most existing multi-person tracking approaches are affected by lighting condition, pedestrian pose change abruptly, scale changes, realtime processing to name a few, resulting in detection error, drift and other issues. To cope with this challenge, we propose an enhanced multi-person framework by introducing a new observation model, which adaptively updates fully online to avoid the loss of sample diversity and learning in a semi-supervised manner. We fuse prior information for tracking decision, meanwhile extracted knowledge from current frame is used to assist to make tracking decision, which can be viewed as a transfer learning strategy, and both aspects can ameliorate the tendency to drift. The new approach does not need any calibration or batch processing. Experimental results show that the approach yields comparable or better performance in comparison with the state-of-the-arts, which do calibration or batch processing.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.