Issue |
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 5 | |
Section | Bio-composite Materials and Structures | |
DOI | https://doi.org/10.1051/matecconf/201927501025 | |
Published online | 13 March 2019 |
Optimization of bonding parameters of laminated wood using a novel bio-based RPF adhesive
1 MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
2 Civil engineering Department, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
* Corresponding author: rxueyong@bjfu.edu.cn
Adhesive is the key component and factor for the manufacture of glulam, affected both the properties and cost of glulam product. Bio-based resorcinol-phenol-formaldehyde (BRPF) resin was developed by partly replacing the expensive resorcinol and phenol with the cheap biomass derived pyrolysis oil. The press process parameters and the dosage of adhesive and corresponding curing agent were selected as the factors and extensively studied. BRPF resin was successfully used to bond the laminas to produce glulam, and the optimized process parameters for the cold-pressing adhesion of BRPF resin with pine wood were obtained as follows: the cold-pressing pressure 1.4 MPa, the cold-pressing time 9 h, the amount of adhesive coating 320 g/m2, and the proportion of curing agent (poly-formaldehyde) 17%. The mechanical performances of laminated wood bonding with BRPF resin under the optimal condition were further verified. It is believed that the results obtained here will promote the use of bio-based resin in the bonding of laminated wood, and then contribute to the green manufacturing of glulam with lower cost.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.