Issue |
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 11 | |
Section | Bio-composite Materials and Structures | |
DOI | https://doi.org/10.1051/matecconf/201927501024 | |
Published online | 13 March 2019 |
Digital workflow for the accurate computation of the geometric properties of bamboo culms for structural applications
Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
* Corresponding author: r.lorenzo@ucl.ac.uk
Bamboo is one of the most promising sustainable construction materials due to the large endemic natural reserves prevalent in the Southern Hemisphere. However, industrialised materials, such as concrete, steel and aluminium have overshadowed the application of natural bamboo culms, due to the high-quality assurance achieved over decades refining the production processes of structural elements manufactured from the former. As a result, the physical, geometric and mechanical properties of these industrialised structural elements are quantifiable, predictable and in agreement with international standards. This research presents the details of a digital workflow to quantify the inherent geometric variability of bamboo culms as part of a new quality assurance process for this natural structural element. This workflow relies on the use of a mid-range, commercially available structured-light 3D scanner to accurately capture a point cloud of the bamboo geometry and generate a corresponding polygon mesh. Digital models of three different bamboo species were validated through comparison with key physical measurements finding that the adoption of these digital models can significantly improve the accuracy and efficiency of manual methods due to the complex irregularities found in bamboo culms. This work demonstrates the benefits of adopting a non-destructive, reverse-engineering approach to quantify the geometric properties of bamboo compared to traditional tools and methods. Overall, this research shows the potential of digital technologies to support the adoption of this natural material allowing for the re-assessment of design workflows and providing an opportunity for bamboo to compete with industrialised materials.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.