Issue |
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 9 | |
Section | Bio-composite Materials and Structures | |
DOI | https://doi.org/10.1051/matecconf/201927501004 | |
Published online | 13 March 2019 |
Effects of APP/SiO2 polyelectrolyte composites on wood-plastic composite
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Corresponding author: mzpan@njfu.edu.cn
This paper was aimed to evaluate process of APP/SiO2, which used Nano-crystalline cellulose (NCC) modified ammonium polyphosphate (APP) as anionic polyelectrolyte (a-APP), and cationic polyethyleneimine (PEI) modified Nano–SiO2 as cationic polyelectrolyte (c-SiO2). The flame retardant system was built due to the reaction of a-APP and c-SiO2. Polyelectrolyte composite of a-APP/c-SiO2 were then assembled on the surface of wood powder and HDPE composites. The effect of polyelectrolytes on wood-plastic composites (WPC) were investigated and the results showed that the flame-retardant property of WPC treated by polyelectrolyte was the best. The average heat release rate was 152.8kW/m2, the peak heat release rate was 352.2kW/m2, the total heat release was 108.5kW/m2, the limit oxygen index reached the maximum was 27.5%, compared with the WPC treated by APP, the elongation at break increased by 60.4%. After anionic and cationic polyelectrolyte treatment, making anionized a-APP and cationized c-SiO2 due to the charge interaction, in the WPC combustion process to form a dense, uniform WPC carbon layer, thereby reducing the heat transfer to the material inside, and increasing the flame retardancy of WPC composites.
Key words: Polyelectrolytes / Ammonium polyphosphate / Nano–SiO2 / Wood-plastic composite / properties
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.