Issue |
MATEC Web Conf.
Volume 274, 2019
RICON17 - REMINE International Conference Valorization of Mining and other Mineral Wastes into Construction Materials by Alkali-Activation
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 5 | |
Section | Field Application of AAM, Such as Ready Mixes, Repair and Precast | |
DOI | https://doi.org/10.1051/matecconf/201927404003 | |
Published online | 22 February 2019 |
Modification of Alkali Activated Blast Furnace Slag for Pothole Repairs
1
Kajaani University of Applied Sciences, Department of Mechanical and Mining Engineering, FI-87101, Finland
2
Solid Liner Ltd, Finland
* Corresponding author: minna.sarkkinen@kamk.fi
Potholes denote small, typically sharp edged holes in the pavement. The aim of this research was to study the usability of alkali activated (AA) blast furnace slag based material in the repair of paved roads, especially during the cold winter and spring seasons when such repairs are needed most and the use of hot asphalt is not possible. The objective was to a find material which is both more cost-efficient and durable than plain cold asphalt. Properties like rapid strength development, good bonding with old paving material, weather resistance, abrasion resistance, and low shrinkage were required. The influence of the chosen factors on the performance of the material was studied applying the multi-attribute optimization method. The impact of different additives, such as Portland cement, fibers and crushed tire rubber were studied. The results indicated that the AA slag based materials studied can be improved by suitable additives to make them reach desired performance. According to the tests, adding Portland cement increased compressive strength threefold after 3 hours and reduced shrinkage by 34% but should be a negative impact on higher levels related to freeze-thaw resistance. In addition, crushed rubber was indicated to have a positive impact related to all the studied performance properties.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.