Issue |
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 4 | |
Section | Welding Technologies | |
DOI | https://doi.org/10.1051/matecconf/201926901007 | |
Published online | 22 February 2019 |
Effect of Heat Sinks on Cooling Time to Weld Interpass Temperature
Materials and Production Engineering, Faculty of Technology, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
Corresponding author: Juhani.Laitila@Oulu.fi
In high- and ultrahigh-strength steel welding, interpass cooling time is an important factor affecting productivity and welding costs. Usually, welding heat input is restricted to meet the relatively short recommended cooling times between 800 and 500 °C (t8/5), which are prescribed by the need to meet weld strength and toughness properties. This, in turn, leads to the need for multipass welding with the interpass waiting times needed for the weld to cool to a sufficiently low interpass temperature. Welding productivity is affected by both the number of passes and the interpass waiting time. With a view to minimizing the total number of passes needed for a given preparation, it is beneficial for the interpass temperature to be as low as possible as this permits higher heat input for a given t8/5. On the other hand, low interpass temperature requires longer interpass waiting times. Therefore, this research concerns the potential of introducing copper heat sinks adjacent to the weld to reduce the time it takes for the weld to cool down to the interpass temperature. It is demonstrated that, in the case of a butt weld in a 6 mm thick base plate MAG welded with a weld energy of 1 kJ/mm and an interpass temperature of 100 °C, copper heat sinks almoust halve the interpass waiting time. This can have a marked effect on the overall productivity when welding highand ultrahigh-strength steels and increase their attractiveness for steel construction.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.