Issue |
MATEC Web Conf.
Volume 265, 2019
International Geotechnical Symposium “Geotechnical Construction of Civil Engineering & Transport Structures of the Asian-Pacific Region” (GCCETS 2018)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 7 | |
Section | Foundations and Underground Structures | |
DOI | https://doi.org/10.1051/matecconf/201926505003 | |
Published online | 30 January 2019 |
Geotechnology of restoration of culverts in complex ground conditions without their decommissioning
1
Emperor Alexander I State Transport University, 9 Moskovsky Pr., St. Petersburg, 190031, Russia
2
NPF Transspetstroy, 24 Furshtatskaya St., St. Petersburg, 191028, Russia
* Corresponding author: perminov-n@mail.ru
In the article, on the basis of extensive theoretical and experimental research carried out, innovative geotechnology for repair of culverts is presented, which provides an improvement in the conditions for interaction between the body of the structure and the soil massif with increasing technogenic impacts. The analysis of the technical condition of the culvert transport and engineering structures under special operating conditions is given. Factors determining their premature emergency condition and interfering with stable functioning under increasing loads and impacts have been studied. On the basis of many years of experimental and theoretical and experimental design work, geotechnology «Saturn» has been proposed, suitable for repairing all types of culverts on railroads and highways, engineering infrastructure facilities, and especially for repair and reconstruction of pipes under conditions of a constant intensive watercourse with nonstandard (atypical) constructive solutions, as well as located in hard-to-reach and difficult for the organization of the construction site sections of the route. The experience of successful application of the developed technology "Saturn" on the railroad during the repair and reconstruction of long-maintained culverts of stone and concrete pipes under the conditions of a constant intensive watercourse and at water disposal facilities during repair of deep tunnels without their decommissioning is described.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.