Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 03018 | |
Number of page(s) | 7 | |
Section | Forensic Engineering, Structural Health Monitoring System, Assessment and Retrofitting, Disaster Mitigation and Restoration | |
DOI | https://doi.org/10.1051/matecconf/201925803018 | |
Published online | 25 January 2019 |
Seismic Performance Evaluation of a Multistory RC Building in Padang City
1 Civil Engineering Department, Andalas University, Kampus Limau Manis, Padang, 25163, Indonesia
2 Civil Engineering Department, Padang Institute of Technology, Jalan Gajah Mada Nanggalo, Padang, 25143, Indonesia
* Corresponding author: iafriltamung@eng.unand.ac.id
Since a long time ago, Padang City has been recognized as one in most-earthquake and tsunami prone city in the world. The successive significant earthquakes that have struck western coast of Sumatra Island from 2004 to 2010 seems to warn the city about its prone condition. The last major Padang-Pariaman earthquake on September 30, 2009, for instance, has caused hundreds of death and lousy damage to thousands of houses and buildings in city. Recently, several new multistory reinforced concrete (RC) buildings have been established in this area. Its include such buildings as government office, mosques, hotels, school and university. The city government plans to use these buildings as vertical evacuation facilities if an earthquake followed by a tsunami hit the city in the near-future. As a consequence, of course, these infrastructures should be well designed and constructed to resist the future earthquakes motion. This paper discusses an evaluation of the seismic performance of an existing multistory RC building in Padang city. The building was a ten-story of hotel RC building located near the coastline of Padang city. A series Pushover and Time History Analyses were conducted to examine the seismic performance of the target R/C building. It uses STructural Earthquake Response Analysis (STERA-3D), a computer software based on the nonlinear finite element method. The Pushover analysis was conducted for maximum drift ratio 1/200 in X and Y directions, respectively. The input ground motion in a maximum acceleration of about 400 gals and 600 gals for 60 seconds’ excitation were used for the Time History Analysis. These input ground motions were generated from the recorded ground motion of 2009 Padang-Pariaman earthquake. The result of the analyses suggest that the current target multistory RC building has outstanding seismic performance. The result is based on the level of damage of the structural components, base shear, inter-story drift, lateral displacement, dynamic responses and the seismic capacity spectrum of the analytical model.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.