Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 7 | |
Section | Forensic Engineering, Structural Health Monitoring System, Assessment and Retrofitting, Disaster Mitigation and Restoration | |
DOI | https://doi.org/10.1051/matecconf/201925803007 | |
Published online | 25 January 2019 |
Assessment of Reinforced Concrete Building for Disaster Reduction Strategy in Padang City, West Sumatra, Indonesia
1 The University of Tokyo, IIS, Komaba 4-6-1, Tokyo, Japan
2 Universitas Negeri Padang, Jl.Prof.Hamka, Padang, Indonesia
* Corresponding author: eka-j@iis.u-tokyo.ac.jp
Padang City, West Sumatra province is one of the most vulnerable cities in the west coast of Indonesia. Together with the increase in population in Padang City, the number of the building is also increasing. Meanwhile, researchers predicted that Padang City is facing the impendence of mega-earthquake with magnitude more than 8 in scale Richter (SR). The last Earthquake with magnitude 7.6 SR caused fatality with more than 1200 people died and almost 3000 others were injured. Most of the victims injured due to the collapse and damage of buildings, especially the Reinforced Concrete (RC) structure. To reduce the damage due to seismic load as the preparation for the future earthquake, the assessment of the element at risk subjected to the seismic load in Padang City is essential. The predominant building typology in Padang City is RC building. Using the Applied Element Method that can show structural response till collapse state, has been simulated typical low-rise RC infilled wall building in Padang City with the consideration of its different on concrete quality based on local concreting workmanship. Incremental Dynamic Analysis (IDA) by using some ground motion has been used to observe the structural response. The damage states and damage pattern has been judged based on HAZUS criteria. The results show that local compaction method affected the concrete compression quality, that also influences the building performance which is subjected to earthquake loads.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.