Issue |
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
|
|
---|---|---|
Article Number | 02020 | |
Number of page(s) | 10 | |
Section | Modelling and Simulation, Structural Optimization | |
DOI | https://doi.org/10.1051/matecconf/201925402020 | |
Published online | 15 January 2019 |
Flexible grippers for industrial robots – comparison of features of low-cost 3D printed component
Warsaw University Of Technology, Faculty of Mechatronics, 02-525 Warsaw, ul. św. A. Boboli 8, Poland
* Corresponding author: ksawery.szykiedans@pw.edu.pl
The aim of presented work was to analyse the feasibility of using 3D-print technology in robotics based on the production of industrial robot flexible grippers. For selected geometry of gripper single finger available 3D printing techniques has been analysed. The study made by authors uses the following additive technologies and devices: SLS (Selective laser Sintering) and FDM (Fused deposition modelling). As a prior an analyses of capabilities of individual technologies were done by testing the quality of the 3D CAD model recreated on test print-outs. Based on the printed gripper, its functionality, and strength properties were examined. Strength of grapplers was tested with a use of an MTS test machine under repeating deflexion simulating standard operational cycle of a gripper. Test proved that at least few thousands of cycle are possible to be made by a 3D printed gripper. What interesting gripper made with use of the less advanced printer showed different wear behaviour than an one made on the more advanced. First one showed almost instantaneous start of slow and constant strength degradation while the second one proved to have a stable deflexional capability by almost twice an number of cycles. More isotropic structure of an SLS printed gripper caused the best results of all tested ones.
Key words: Flexible robotic grippers / additive manufacturing / fatigue test / fused deposition modelling / selective laser sintering / layer plastic deposition
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.