Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 05017 | |
Number of page(s) | 4 | |
Section | Mathematical Modeling in the Energy and Industrial Processes | |
DOI | https://doi.org/10.1051/matecconf/201824005017 | |
Published online | 27 November 2018 |
Verification of the heat transfer model for screw reactor
Melentiev Energy System Institute SB RAS, 130, Lermontov St., Irkutsk, 664033, Russia
* Corresponding author: lirt@mail.ru
At present, the screw reactor pyrolysis is a promising and rapidly developing technology, because it helps obtain the end product, which is charcoal, tar, and synthesis gas. Additionally, pyrolysis can be considered as a preliminary stage for making the charcoal of the preset conversion for its further gasification when obtaining coal-derived gas. This research aims at establishing relationships between the operational parameters of pyrolysis and obtaining of the charcoal of preset conversion by means of mathematical modeling, full-scale experiment, and instrumental studies. Such comprehensive research ensures the accurate initial data, verification of the model, and optimal parameters for obtaining the product with preset properties as well as for further scaling of the reactor. In terms of design the pyrolyzer represents a recuperative heat exchanger where a mix of stack and recirculation gases is considered as a heat carrier. To prevent sintering of particles the screw transportation of fuel is used. The Comsol Multiphysics Software is used as a simulation environment. Heat exchange in the process of pyrolysis is simulated considering physical properties (porosity, permeability, etc.) of the medium. The constructed calculated mesh consisted of 604 thousand elements of three types (tetrahedrons, prisms and pyramids) and had the minimum size of 0.2 mm.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.