Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 7 | |
Section | Mathematical Modeling in the Energy and Industrial Processes | |
DOI | https://doi.org/10.1051/matecconf/201824005004 | |
Published online | 27 November 2018 |
About the shortwave multiple reflections in an urban street canyon building related to three different European climates
1
Department of DIAEE, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
2
Department of Mechanical Engineering, University of Roma TRE, Via della Vasca Navale 79, 00146 Rome, Italy
* Corresponding author: chiara.colucci@uniroma1.it
Energy exchanges between buildings is affected by urban fabric. As a matter of fact, heat exchange between adjacent buildings is due to convective and radiative heat flows. The main parameters which influence these heat exchange mechanisms are due to climate conditions such as air temperatures/humidity, wind speed/direction and solar irradiance. Most building energy simulations are done on an independent single building with typical meteorological year (TMY). These TMY meteorological data cannot represent the state of the urban microclimate and rather ignores the microclimate influence on buildings adjacent to street canyons. However, solar radiation shading and reflection of the environment within the street canyons are important factors affecting the energy consumption of buildings. In this work, a building energy simulation tool is used to study the impact of multiple shortwave inter-reflections in an urban environment. A street canyon model validated in a previous work was modeled in TRNSYS in order to simulate the effects of the urban radiative trapping. An urban canyon with aspect ratio H/W=1 was chosen, with South-North orientation, with transparent/opaque surfaces ratio Atr/Aop=0.5 and 4 values (0.2, 0.4, 0.6, 0.8) of reflectance factor of the envelope surfaces. The goal is to characterize how solar absorption influence the urban energy requirements. The analysis was conducted for 3 cities in different climatic zones: Rome, Palermo and Krakow.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.