Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 6 | |
Section | Heat, Mass and Momentum Transfer | |
DOI | https://doi.org/10.1051/matecconf/201824001025 | |
Published online | 27 November 2018 |
Effect of baffle shape in heat transfer for jet impingement on a solid block
1
Department of Mechanical Engineering, Kalasalingam University, Anand Nagar, Krishnan Koil, Tamilnadu, India 626126
2
Department of Mechanical Engineering, Kalasalingam University, Anand Nagar, Krishnan Koil, Tamilnadu, India 626126
3
Department of Mechanical Engineering, College of Engineering and Computing, Alghurair University, Dubai. UAE
4,5,6
Institute of Thermal Power Engineering, Cracow University of Technology, Kraków, Poland
* Corresponding author: poclon@mech.pk.edu.pl
The numerical solution solution is obtained for fluid flow and heat transfer in a confined impinging slot on a solid block with the presence of baffles. In order to consider the effect of baffle shape the rectangular and semi circular baffles are considered and for the effect for Reynolds number the Reynolds number is varied from 100 to 300 with the step of 50. The present study reveals the vital impact of Baffle shape and Reynolds number (Re) on the fluid flow and heat transfer characteristics over a wide range. It is finally added that the presence of baffle improves the Nusselt number. The Nusselt number increases with the increase of Reynolds number. The present study proved that, the primary peak of Nusselt number occurs nearer to the reattachment length. The secondary peak of Nusselt number occurs nearer to the baffle. It is observed that for semi circle baffle the velocity attains maximum one compared to rectangular baffle.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.