Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
Section | Heat, Mass and Momentum Transfer | |
DOI | https://doi.org/10.1051/matecconf/201824001015 | |
Published online | 27 November 2018 |
Experimental and numerical investigation on the impact of vacuum level on effective thermal conductivity and microstructure of carbon fibre reinforced epoxy composites manufactured by vacuum bag method
1
Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Str., 00-665 Warsaw, Poland
2
Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
* Corresponding author: mkubis@itc.pw.edu.pl
The physical properties of epoxy based carbon reinforced composites are highly anisotropic due to their directional structure and dependent on the manufacturing process parameters. Thermal conductivity was found to be dependent on the void volume fractions, which appear as a result of the insufficient vacuum level. In the proposed paper the multi-scale computational model of heat transfer across the carbon fiber-epoxy resin composite is proposed. The meso-scale effective thermal conductivities are determined with analytical formulae for isotropic and anisotropic media, the latter takes into account thermal resistance at the interface of fibres and epoxy resin. Proposed model is utilized to determine the effective thermal conductivity in the direction perpendicular to plies of composite. The influence of void fractions and the thickness of the composite on the effective thermal conductivity is investigated. The numerical outcomes underestimate the real variation in conductivity, which can be caused by change in carbon volume fraction of samples manufactured at different vacuum levels which was not considered in numerical computation.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.