Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 7 | |
Section | Heat, Mass and Momentum Transfer | |
DOI | https://doi.org/10.1051/matecconf/201824001008 | |
Published online | 27 November 2018 |
Numerical modeling of heat transfer in the fixed-matrix regenerator working in the Electric Thermal Storage heating system
1
Institute of Thermal Power Engineering, Cracow University of Technology, 31-864 Cracow, Poland
2
Faculty of Environmental Engineering, Cracow University of Technology, 31-155 Cracow, Poland
3
Department of Telecommunications, AGH University of Science and Technology, 30-962 Cracow, Poland
* Corresponding author: cisekpiotr@mech.pk.edu.pl
The study presents the concept of Electric Thermal Storage (ETS) central heating system. Thermal Energy Storage (TES) is carried out in the fixed-matrix regenerator. The energy conservation equations, determined for the discharge period of the regenerator operation, are implemented in MATLAB numerical procedures based on the Finite Volume Method (FVM). In the model pressure drops within the system are calculated, both for the airflow through the inner tubes, and between the tubes. The flow distribution calculations show that the assumption of even air flow distribution would not be justified. Subsequently, the values of heat transfer coefficients are determined for the four distinct heat transfer surfaces, for the variable axial coordinate z and during the time of the system operation. The use of two different criterion equations is considered, for determining the mean Nusselt number Num for fluid flow through the concentric annular duct, as well as for the local Nusselt number Nuz calculated for the fluid flow through a circular or non-circular ducts. The most appropriate approach is selected by comparing the calculation results with experimental data. Taking into account the relative error, RMSE, and MAPE values calculated, it may be concluded that the Taler correlation – for non-circular ducts – gives results closer to the experimental data obtained.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.