Issue |
MATEC Web Conf.
Volume 233, 2018
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
|
|
---|---|---|
Article Number | 00024 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/201823300024 | |
Published online | 21 November 2018 |
Multidisciplinary challenge in the design of a MWCNTs-based polymer smart structure
1
Department of Industrial Engineering - Aerospace section, University of Naples “Federico II”, Via Claudio, 21, Naples, 80125, Italy
2
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano,
Salerno, 84084, Italy
* e-mail: maurizio.arena@unina.it
Smart structures represent of course a current challenge for the application on the aircrafts. Dealing for example with morphing and variable-shape structures, the skin needs to face extremely high strains, while withstanding the operational loads in order to ensure a smooth profile to the complete system. In this context, the authors led the design and manufacturing of carbon fiber-reinforced composite panels, including different filler infusions based on multi-walled carbon nanotubes (MWCNTs) technology. The vibro-acoustic tests have been carried out on an innovative formulation for the characterization of the damping properties related to such micro-handling treatments. The percentage of nano-filler has been chosen so as to be close to the percolation threshold of the material (about 5wt%). As a result of synergic collaboration between Smart Structures Lab of University of Naples “Federico II” and University of Salerno within H2020-MASTRO (Intelligent bulk MAterials for Smart TRanspOrt industries) research project, a multi-functional composite concept has been idealized and developed. The main purpose is to develop intelligent bulk materials for the transport field based on the novel concepts like self-sensing, self-deicing, self-curing, self-healing and selfprotection methodologies to enhance consumer safety, component life-span and performance while reducing maintenance and manufacturing costs. The functionality of the developed components will be demonstrated under relevant conditions at prototype level with special attention to the aerospace structures.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.