Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 03016 | |
Number of page(s) | 7 | |
Section | Algorithm Study and Mathematical Application | |
DOI | https://doi.org/10.1051/matecconf/201823203016 | |
Published online | 19 November 2018 |
Scale Adaptive Kernel Correlation Filter Tracking Algorithm Combined with Learning Rate Adjustment
1
School of Internet of Things, Jiangnan University, Wuxi, 214122, China
2
Jiangsu Key Laboratory of IOT Application Technology, Taihu University of Wuxi, Wuxi, 214122, China
* Corresponding author: aDi Wu:1934169204@qq.com
Aiming at the problem that the traditional correlation filter tracking algorithm is prone to tracking failure under the target’s scale change and occlusion environment, we propose a scale-adaptive Kernel Correlation Filter (KCF) target tracking algorithm combined with the learning rate adjustment. Firstly, we use the KCF to obtain the initial position of the target, and then adopt a low-complexity scale estimation scheme to get the target's scale, which improves the ability of the proposed algorithm to adapt to the change of the target's scale, and the tracking speed is also ensured. Finally, we use the average difference between two adjacent images to analyze the change of the image, and adjust the learning rate of the target model in segments according to the average difference to solve the tracking failure problem when the target is severely obstructed. Compared the proposed algorithm with other five classic target tracking algorithms, the experimental results show that the proposed algorithm is well adapted to the complex environment such as target’s scale change, severe occlusion and background interference. At the same time, it has a real-time tracking speed of 231 frame/s.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.