Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 03015 | |
Number of page(s) | 4 | |
Section | Algorithm Study and Mathematical Application | |
DOI | https://doi.org/10.1051/matecconf/201823203015 | |
Published online | 19 November 2018 |
An Improved Particle Swarm Optimization with Gaussian Disturbance
School of Mechanical Engineering, Hubei University of Technology, China
* Corresponding author: 794411947@qq.com
The particle swarm optimization (PSO) is a widely used tool for solving optimization problems in the field of engineering technology. However, PSO is likely to fall into local optimum, which has the disadvantages of slow convergence speed and low convergence precision. In view of the above shortcomings, a particle swarm optimization with Gaussian disturbance is proposed. With introducing the Gaussian disturbance in the self-cognition part and social cognition part of the algorithm, this method can improve the convergence speed and precision of the algorithm, which can also improve the ability of the algorithm to escape the local optimal solution. The algorithm is simulated by Griewank function after the several evolutionary modes of GDPSO algorithm are analyzed. The experimental results show that the convergence speed and the optimization precision of the GDPSO is better than that of PSO.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.