Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 6 | |
Section | Algorithm Study and Mathematical Application | |
DOI | https://doi.org/10.1051/matecconf/201823203011 | |
Published online | 19 November 2018 |
A segmentation of pulmonary nodules based on improved fuzzy C-means clustering algorithm
1
HeNan University of Technology, School of Information Science and Engineering, 450001, China
2
HeNan University of Technology, School of Information Science and Engineering, 450001, China
a Corresponding author: 782640105@qq.com
According to reports, lung cancer is gradually becoming the first cancer that threatens human life. The early stage of lung cancer is in the form of pulmonary nodules. The key issue in computer-aided diagnosis of lung tumors is to correct and accelerate rapid segmentation of diseased tissue. Therefore, this paper proposes a robust fuzzy c-mean clustering algorithm for pulmonary nodules segmentation, which can effectively improve the adaptive degree of local domain pixels. Since the information of the domain pixels does not necessarily have a positive correlation with the central pixels, the reference mechanism of domain window pixel information needs to be redefined. The robust fuzzy c-means clustering algorithm redefines the grayscale of the spatial pixel points in the domain and selects different fuzzy factors according to the reference standard. Based on this, the weights of different fuzzy factors are updated according to the characteristics of pixel points and gray fluctuation in pixel domain. The experimental results show that this method is superior to other typical algorithms in the segmentation of pulmonary nodules.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.