Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 02049 | |
Number of page(s) | 7 | |
Section | 3D Images Reconstruction and Virtual System | |
DOI | https://doi.org/10.1051/matecconf/201823202049 | |
Published online | 19 November 2018 |
Study on Visual Techniques of Potential Pattern Discovery for Time Series Data
College of Systems Engineering, National University of Defense Technology, 410073 Changsha, China
a Corresponding author: weiyingmei126@126.com
Sequential pattern mining is always a very important branch of time series data mining. The pattern mining with visual means can be used to extract the knowledge of time series data more intuitively. Based on the research content, this paper analyzes the sequence pattern mining methods in different aspects and their combination with visualization technology. We further discuss and summarize the advantages of different visualization methods in discovering the potential patterns in time series data. Different systems and models have their unique information to show the focus. Compared with the characteristics of the model, the development and evolution of visualization technology for the discovery of potential patterns of time series data can be summarized. Finally, this paper discusses its development trend and how to play a greater role in the era of big data.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.