Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 05016 | |
Number of page(s) | 7 | |
Section | Energy generation efficiency | |
DOI | https://doi.org/10.1051/matecconf/201822505016 | |
Published online | 05 November 2018 |
Improving The Manoeuvrability of Electric Vehicle with Four-Wheel Drive and Four-Wheel Steering – A Nonlinear Model Vehicle Dynamics Approach
Faculty of mechanical engineering, Universiti Malaysia Pahang, Pekan Campus, 26600 Pekan, Pahang, Malaysia
* Corresponding author: mizhar@ump.edu.my
The dynamics motion of a vehicle is inherently a nonlinear dynamics system especially at high speed. Majority of past researches on four-wheel steering (4WS) vehicle adopt easier way of modelling a control system based on vehicle with linear dynamic equation of motion. This paper study on the vehicle dynamics of an electric vehicle with 4WD and 4WS based on nonlinear vehicle dynamic approach. A numerical simulation was performed to analyse the variance of a linear model and nonlinear model during cornering at various constant speed. The results show that during low speed cornering at 10 km/h, the linear and nonlinear model produced similar steady state cornering based on the trajectory and yaw rotational speed. However, the variants of linear and nonlinear started to appear as the vehicle speed increase. By obtaining the steady state cornering speed, another numerical simulation was performed to analyse the characteristics of the 4WD and 4WS electric vehicle. A passive control of the rear wheels’ steer angle was implement in the simulation. The results show that the parallel steering mode decreased the yaw rotational speed which broaden the trajectory of the cornering, while the opposite steering mode increased the yaw rotational speed that led to a tighter trajectory during cornering.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.