Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 6 | |
Section | Renewable and Non-renewable Energy Resources and Power Generation | |
DOI | https://doi.org/10.1051/matecconf/201822504001 | |
Published online | 05 November 2018 |
Co-gasification of Corn and Coconut Residues in Downdraft Gasifier
1
Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
2
Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
* Corresponding author: norazilahtamili@gmail.com
Reliance on a single biomass to generate electrical power can cause disruption due to the inconsistencies in the supply of biomass feedstock. Co-gasification of different biomass can mitigate the problem of inconsistence biomass supply. The aim of this study to investigate thermochemical properties of corn residues (CR) and coconut shells (CS) and syngas performance produced from co-gasification of CR and CS. Biomass materials were characterized in order to understand their physical properties in relation to thermochemical conversion. Co-gasification of CR and CS was carried out in externally heated downdraft gasifier at CR:CS ratio of 50:50, 40:60 and 20: 80. CO composition obtained from blended feedstock is higher as compared to the without blended feedstock. The CO2 and CH4 concentration were increased as CS proportion increased in blend. Biomass with higher moisture content plays important role in the H2 production due to the supercritical water gasification. The blending ratio of CR and CS at 20:80 had a positive synergetic effect as evident by increase in the gas composition for CO, CH4 and H2. It is concluded that co-gasification results of CR and CS is practical and can be considered to complement each other.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.