Issue |
MATEC Web Conf.
Volume 220, 2018
2018 The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 8 | |
Section | Functional Material Design and Modeling | |
DOI | https://doi.org/10.1051/matecconf/201822001007 | |
Published online | 29 October 2018 |
A Condition for Complete Flattening of Asperities in a Rough Contact
Bauman Moscow State Technical University, 105005 Moscow, Russia
Considering rough surface profiles in a contact model is of decisive importance. In the up-to-date rough contact models there remained underexplored the opportunity of complete flattening of smaller asperities and therefore the need of using the multilevel roughness models, including fractal ones. If higher level asperities are not flattened completely when pressed, then they will be able to impact on the contact process. This paper considers model problems of elastic-plastic contact with hardening for a body with protrusions and two pyramids as the objects similar to asperities. Modeling results show that asperities are completely flattened only on condition of confined compression. For real contacting rough surfaces under low pressures, complete flattening of asperities will not occur. It is shown that roughness elements on the surface of the asperities do not disappear even at severe deformation of the latter. The reason is a combination of the asperity form and hardening of material, while the consequence is a reduction of the real contact area.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.